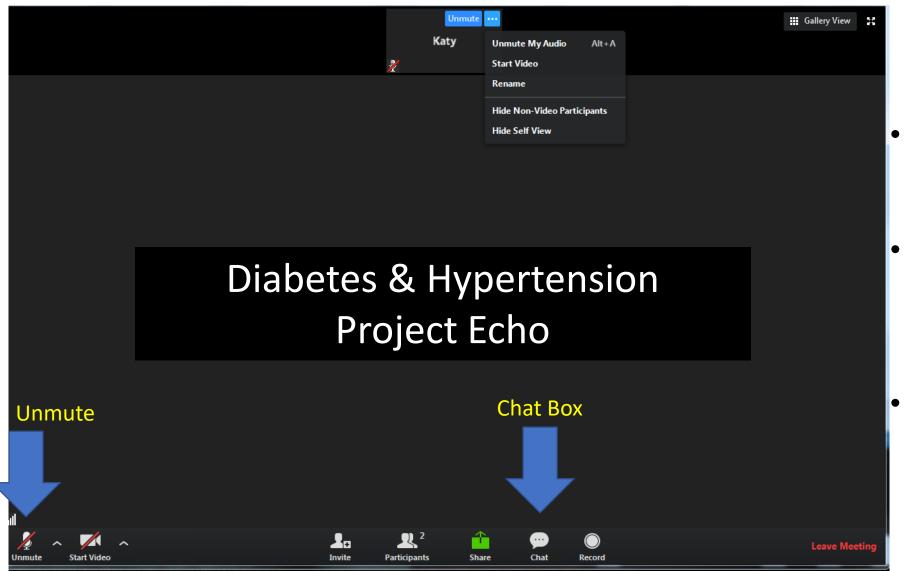


Diabetes and Hypertension Project ECHO* Clinic

*ECHO: Extension of Community Healthcare Outcomes

Sept. 9, 2021

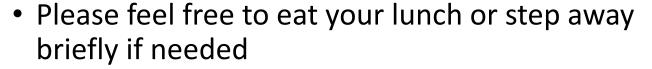

Before we begin:

- Rename your Zoom screen with your name and organization
- Claim CE: text 19179-18817 to 804-625-4041
 - Go to vcuhealth.org/echodmhtn for instructions on creating your account

The Diabetes and Hypertension ECHO is made possible by funding through CDC Cooperative Agreement NU58DP006620-InnoVAte.

Zoom Reminders

You are all on mute.
 Please unmute to talk.


- If joining by telephone audio only, press *6 to mute and unmute.
- Use the chat function to speak with our team or ask questions.

ECHO is all teach, all learn

Helpful Reminders

- We are recording and can share sessions upon request
 - Each session's slides are available on www.vcuhealth.org/echodmhtn
- Please do not share any protected health information in your discussion or the chat box
- Project ECHO operates on the "All Teach, All Learn" model
 - Feel free to ask questions in the chat or unmute to ask questions at designated times
 - We're all here to learn from each other and value each person's input and expertise!

Interactive

Co-management of cases

Peer-to-peer learning

Collaborative problem solving

VCU Hub Team						
Principal Investigator	Dave Dixon, PharmD					
Administrative Medical Director ECHO Hub	Vimal Mishra, MD, MMCi					
Clinical Experts	Niraj Kothari, MD Trang Le, MD					
Project Coordinator/IT Support	Madeleine Wagner					

- NEW: 1-hour ECHO clinics on 2nd and 4th
 Thursdays
- Every ECHO clinic includes a didactic presentation followed by case discussions
- Website: <u>www.vcuhealth.org/echodmhtn</u>
 - Directions for claiming CE can be found here
 - You have up to six days after our session to claim CE by texting 19179-18817 to 804-625-4041

Disclosures

Salvatore Carbone, Ph.D., has no financial conflicts of interest to disclose.

Trang Le, M.D., has no financial conflicts of interest to disclose.

Niraj Kothari, M.D., has no financial conflicts of interest to disclose.

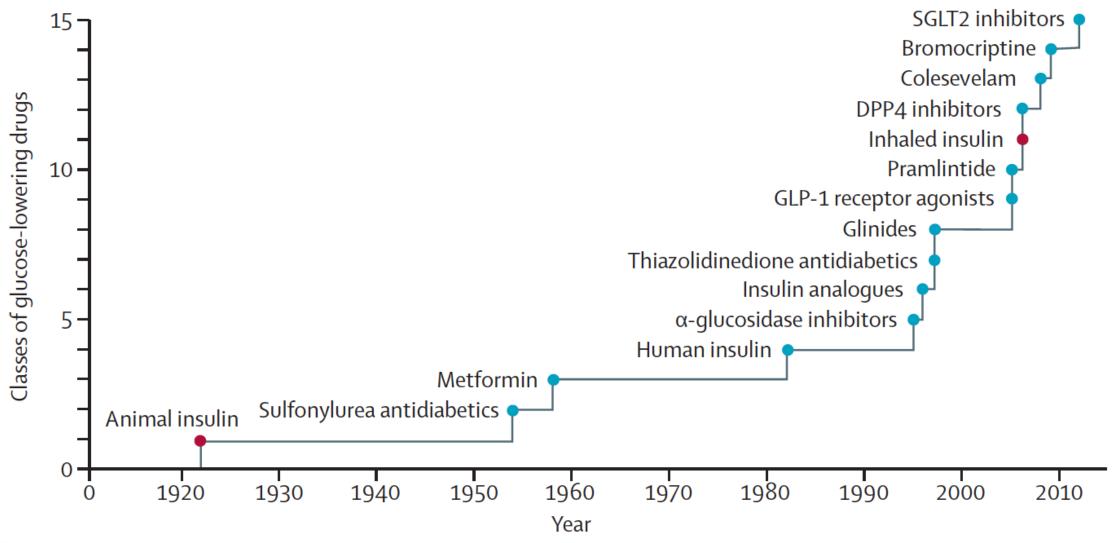
There is no commercial or in-kind support for this activity.

SGLT2 Inhibitors and GLP1 Receptor Agonist for Cardiovascular Disease Prevention

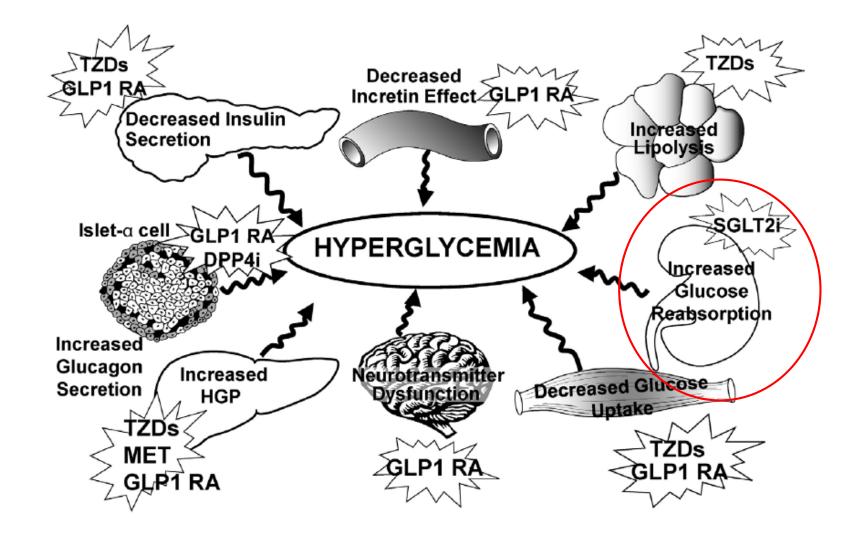
Salvatore Carbone, PhD

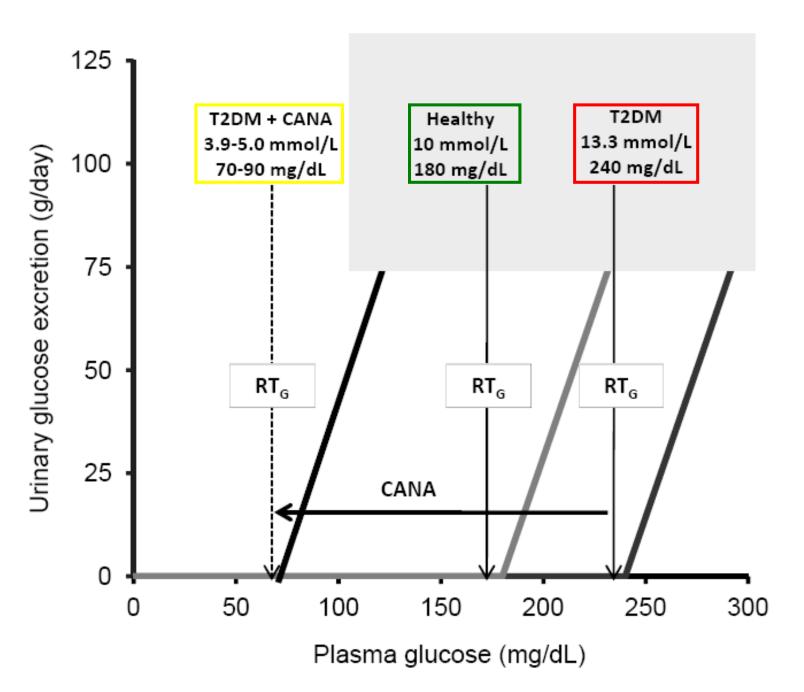
Assistant Professor

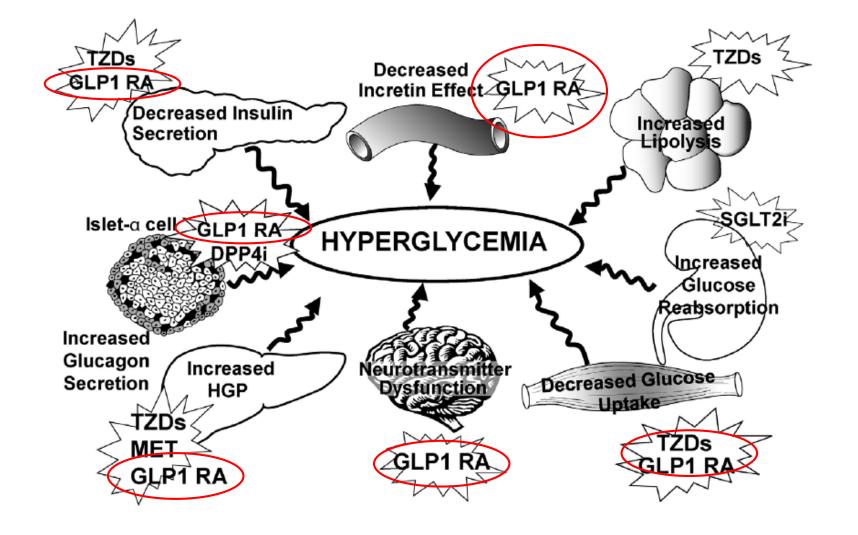
Department of Kinesiology & Health Sciences
College of Humanities & Science
Virginia Commonwealth University
Email: scarbone@vcu.edu


Objectives

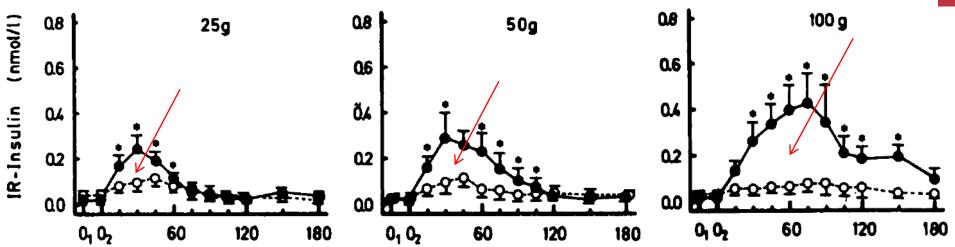
- Understand the new classes of glucose-lowering drugs and their mechanism of action focusing on SGLT2i and GLP1RA
- Recognize the SGLT2i and GLP1RA associated with a reduction in cardiovascular events
- Briefly review the guidelines for CVD risk reduction in patients with T2DM
- Identify the patients that may benefit the most from SGLT2i and/or GLP1RA to reduce CV risk

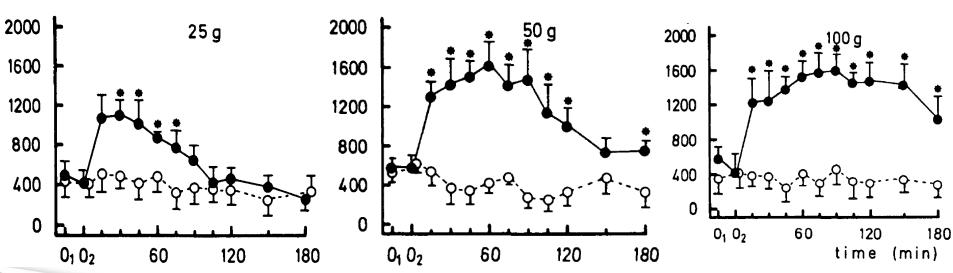

Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future



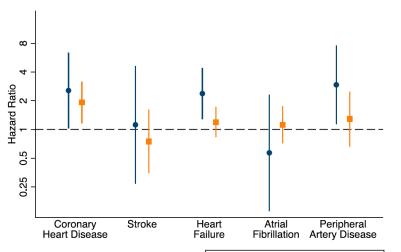


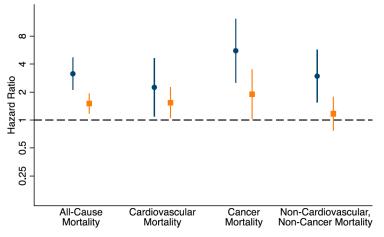
The Ominous Octet

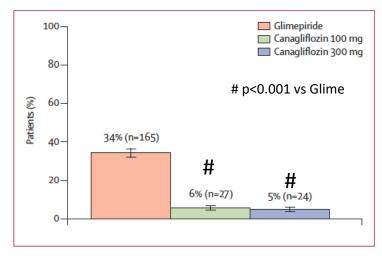




Incretin Effect → **Incretin (Intestin – Secretion – Insulin)**




Glucose-dependent insulinotropic peptide (GIP) and Glucagon Like Peptide-1


Risk of Hypoglycemia

<1 year since hypoglycemic event
 ≥1 year since hypoglycemic event

 $\label{thm:continuous} \textbf{Figure 2--Hypoglycemia HRs} \ \text{and} \ 95\% \ \text{Cls for cardiovascular disease and mortality outcomes by time since severe hypoglycemic event. All HRs are adjusted for covariates in model 3.}$

p<0.001 vs Glime

#

#

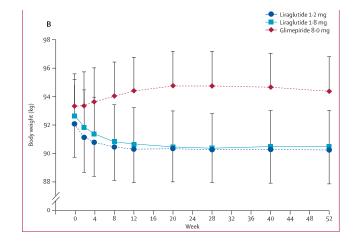
24%

12%

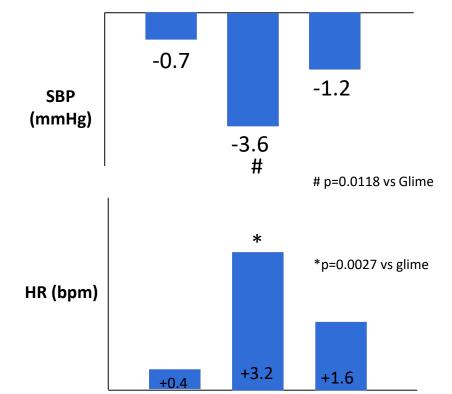
8%

Glime 8 mg Lira 1.8 mg Lira 1.2 mg

Cefalu WT. Lancet 2013(9896):941-50



Garber A et al. Lancet 2009;373(9662):473-81




	Glimepiride	Canagliflozin 100 mg	Canagliflozin 300 mg
Overall population			
Bodyweight (n)	478	479	480
Mean (SD) baseline (kg)	86.6 (19.8)	86.8 (20.0)	86.6 (19.3)
LS mean (SE) change	0.7 (0.2)	- 3·7 (0·2)	- 4·0 (0·2)
Difference (95% CI) vs glimep	iride	-4·4 (-4·8 to -3·9)	-4·7 (-5·2 to -4·3)
LS mean (SE) percentage change	1.0% (0.2)	- 4·2% (0·2)	- 4·7% (0·2)
Difference (95% CI) vs glimep	iride	-5·2 (-5·7 to -4·7)*	- 5⋅7 (- 6⋅2 to - 5⋅1)*
Systolic blood pressure (n)	480	479	480
Mean (SD) baseline (mm Hg)	129·5 (13·5)	130.0 (12.4)	130.0 (13.8)
LS mean (SE) change	0.2 (0.6)	- 3·3 (0·6)	- 4·6 (0·6)
Difference (95% CI)		-3·5 (-4·9 to -2·1)	-4·8 (-6·2 to -3·4)
vs glimepiride			
Diastolic blood pressure (n)	480	479	480
Mean (SD) baseline (mm Hg)	79.0 (8.4)	78.7 (8.0)	79.2 (8.4)
LS mean (SE) change	-0.1 (0.4)	-1.8 (0.4)	-2.5 (0.4)
Difference (95% CI) vs		-1·7 (-2·6 to -0·8)	-2·4 (-3·3 to -1·5)
glimepiride			
Pulse rate (n)	346	365	357
Mean baseline (beats per min)	73.5	74-2	74.6
Mean (SD) change	0.5 (8.3)	- 1·1 (8·5)	- 1·2 (8·7)

*p<0.0001 vs glimepiride.

Lira 1.2 mg

Lira 1.8 mg

Glime 8 mg

Why focusing not only on HbA1c reduction?

Outcome	Relative Risk Reduction	Source
Retinopathy*	29% per 0.9% ↓ A1c	UKPDS ²⁷
Neuropathy†	19% per 0.9% ↓ A1c	UKPDS ²⁷
Microalbuminuria‡	33% per 0.9% ↓ A1c	UKPDS ²⁷

*Surrogate outcome defined as ≥1 microaneurysm in 1 eye or worse retinopathy, and progression of retinopathy as a 2-step change in Early Treatment of Diabetic Retinopathy Study grade.

† Surrogate outcome defined as loss of both ankle reflexes or both knee reflexes, or mean biothesiometer reading from both toes >25 V.

‡ Surrogate outcome defined as urinary albumin concentration >50 mg/L.

Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study

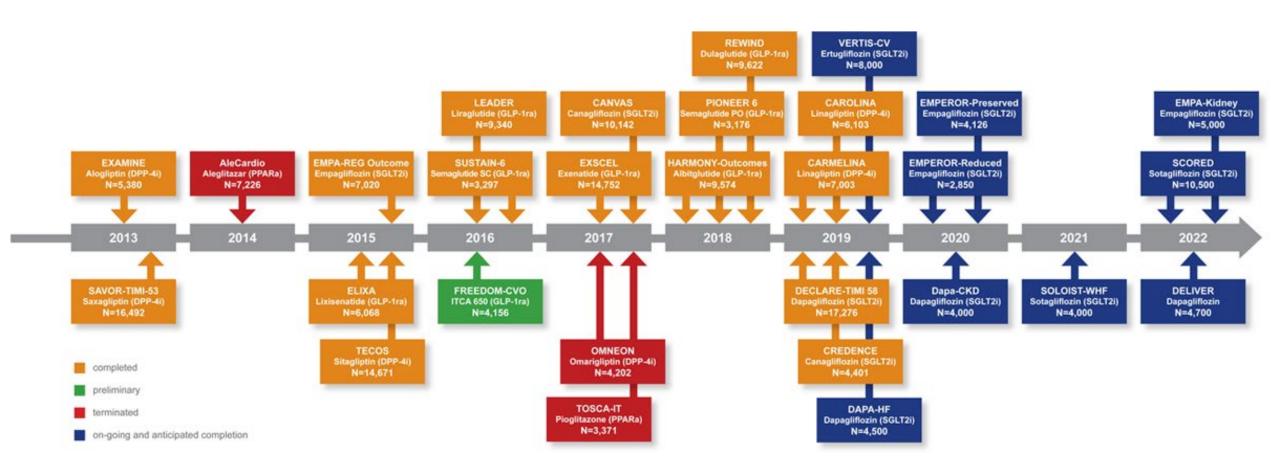
	No of events	Decrease in risk (%) seen for 0.9% difference in HbA _{1c} (95% CI)	P value
Aggregate end points		-	
Any end point related to diabetes	1401	12 (1 to 21)	0.029
Deaths related to diabetes	414	10 (–11 to 27)	0.34
All cause mortality	702	6 (-10 to 20)	0.44
Myocardial infarction	573	16 (0 to 29)	0.052
Stroke	203	-11 (-49 to 19)	0.52
Peripheral vascular disease*	47	35 (-18 to 64)	0.15
Microvascular disease	346	25 (7 to 40)	0.0099
Single end points			
Heart failure	116	9 (-35 to 39)	0.63
Cataract extraction	229	24 (0 to 42)	0.046

^{*}Lower extremity amputation or fatal peripheral vascular disease.

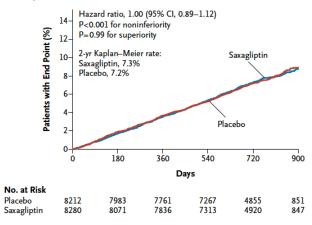
Diabetes Mellitus — Evaluating Cardiovascular Risk in New Antidiabetic Therapies to Treat Type 2 Diabetes

post marketing trials to provide definitive evidence of a CV <u>RR <1.3</u> (<u>vs Placebo</u>)

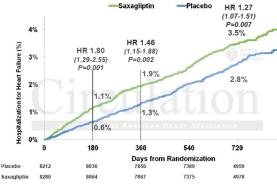
U.S. Department of Health and Human Services
Food and Drug Administration
Center for Drug Evaluation and Research (CDER)


December 2008 Clinical/Medical

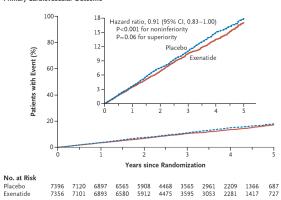
Timeline of CV "Safety" Trials per FDA Guidance on New Diabetes Therapies

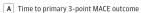


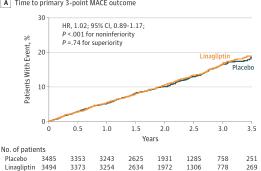
EXAMINE¹ Hazard ratio, 0.96 (upper boundary of the one-sided repeated CI, 1.16) 90-Cumulative Incidence of Primary End-Point Events (%) 18-Placebo 80-70-12-Alogliptin 60-50-40-24 30-20-24 30 Months No. at Risk Placebo 2679 2299 1891 1375 805 286 Alogliptin 2701 2316 1899 1394 821 296


SAVOR-TIMI 53²

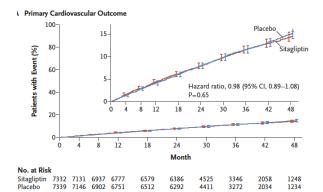
Primary End Point

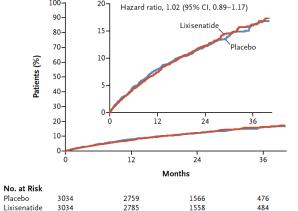

SAVOR-TIMI 53³ - Heart Failure




EXSCEL⁶

Primary Cardiovascular Outcome

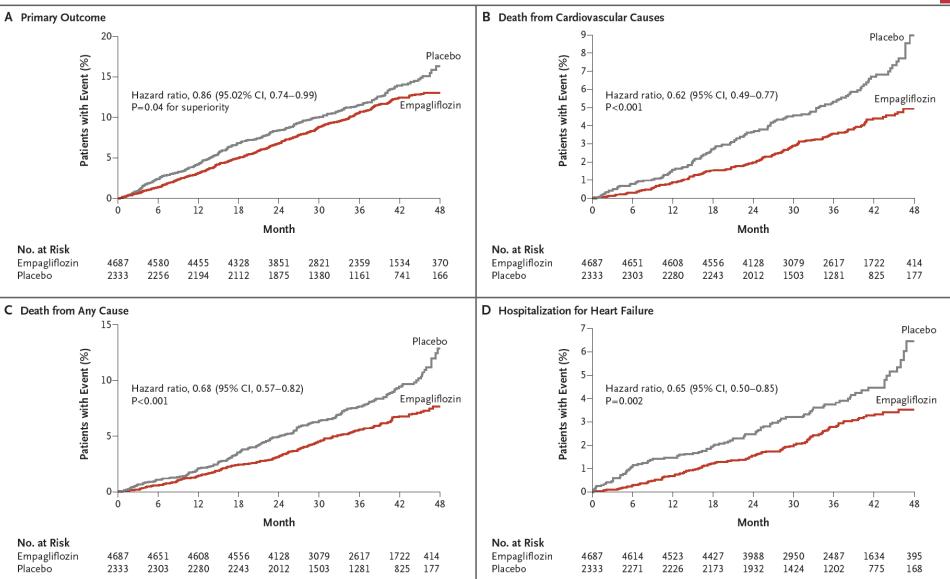



CARMELINA⁷

TECOS4

ELIXA⁵

¹White WB et al. *N Engl J Med* 2013;369(14):1327-35 ²Scirica BM et al. *N Engl J Med* 2013;369(14):1317-26 ³Scirica BM et al. Circulation 2015;132(15):e198 ⁴Green JB et al. N Engl J Med 2015;373(3):232-42 ⁵White WB et al. *N Engl J Med* 2015;373(23):2247-57 ⁶Holman RR et al. N Engl J Med 2017;377(13):1228-1239


⁷Rosenstock J et al. *JAMA* 2019;321(1):69-79

Secondary prevention study
Type 2 Diabetes Mellitus
Approximately 7,000 patients followed for a median of 2.5 years, up to 4 years

Virginia Commonwealth

University

December 2, 2016

Virginia Commonwealth
University

Table 2. Adverse Events.*				
Event	Placebo (N = 2333)	Empagliflozin, 10 mg (N=2345)	Empagliflozin, 25 mg (N=2342)	Pooled Empagliflozin (N=4687)
		number of pa	tients (percent)	
Any adverse event	2139 (91.7)	2112 (90.1)	2118 (90.4)	4230 (90.2)†
Severe adverse event	592 (25.4)	536 (22.9)	564 (24.1)	1100 (23.5)‡
Serious adverse event				
Any	988 (42.3)	876 (37.4)	913 (39.0)	1789 (38.2)†
Death	119 (5.1)	97 (4.1)	79 (3.4)	176 (3.8)∫
Adverse event leading to discontinuation of a study drug	453 (19.4)	416 (17.7)	397 (17.0)	813 (17.3)∫
Confirmed hypoglycemic adverse event¶				
Any	650 (27.9)	656 (28.0)	647 (27.6)	1303 (27.8)
Requiring assistance	36 (1.5)	33 (1.4)	30 (1.3)	63 (1.3)
Event consistent with urinary tract infection	423 (18.1)	426 (18.2)	416 (17.8)	842 (18.0)
Male patients	158 (9.4)	180 (10.9)	170 (10.1)	350 (10.5)
Female patients	265 (40.6)	246 (35.5)	246 (37.3)	492 (36.4)‡
Complicated urinary tract infection**	41 (1.8)	34 (1.4)	48 (2.0)	82 (1.7)
Event consistent with genital infection††	42 (1.8)	153 (6.5)	148 (6.3)	301 (6.4)†
Male patients	25 (1.5)	89 (5.4)	77 (4.6)	166 (5.0)†
Female patients	17 (2.6)	64 (9.2)	71 (10.8)	135 (10.0)†
Event consistent with volume depletion;;	115 (4.9)	115 (4.9)	124 (5.3)	239 (5.1)
Acute renal failure∬	155 (6.6)	121 (5.2)	125 (5.3)	246 (5.2)∫
Acute kidney injury	37 (1.6)	26 (1.1)	19 (0.8)	45 (1.0)‡
Diabetic ketoacidosis¶¶	1 (<0.1)	3 (0.1)	1 (<0.1)	4 (0.1)
Thromboembolic event¶	20 (0.9)	9 (0.4)	21 (0.9)	30 (0.6)
Bone fracture	91 (3.9)	92 (3.9)	87 (3.7)	179 (3.8)

More genital (fungal) infections

Less UTI in women

Less AE

Less SAE

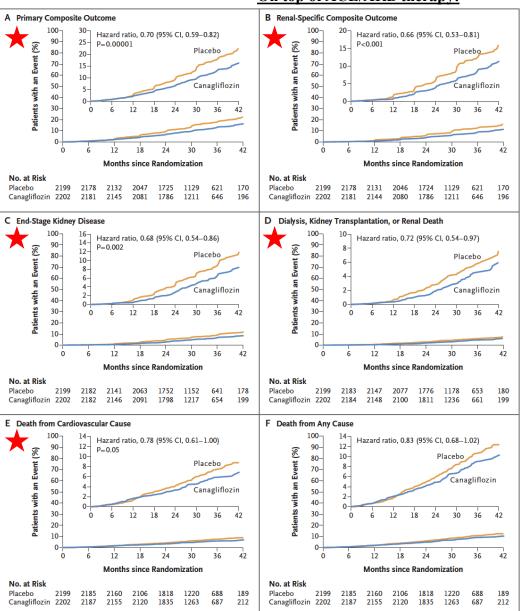
@VCU

Less renal failure

^{*} Data are for patients who had one or more event and who had received at least one dose of a study drug. All events occurred within 7 days after the last receipt of the study drug.

P<0.001 for the comparison with placebo.

P<0.05 for the comparison with placebo. P<0.01 for the comparison with placebo.


ORIGINAL ARTICLE

Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy

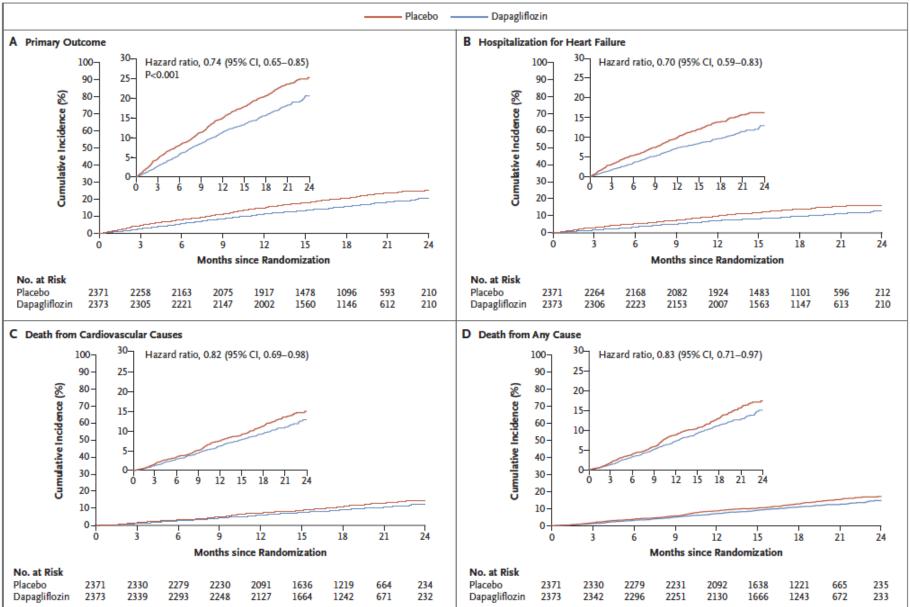
Primary and Secondary (mainly) Prevention study Type 2 Diabetes Mellitus with albuminuric CKD Approximately 4,400 followed for a median 2.6 years, but up to 4.5 years

On top of ACE/ARB therapy!

Association of SGLT2 Inhibitors With Cardiovascular and Kidney Outcomes in Patients With Type 2 Diabetes A Meta-analysis

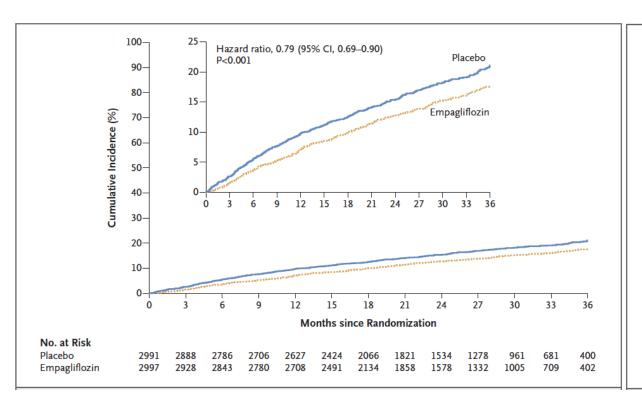
B MACEs by ASCVD status

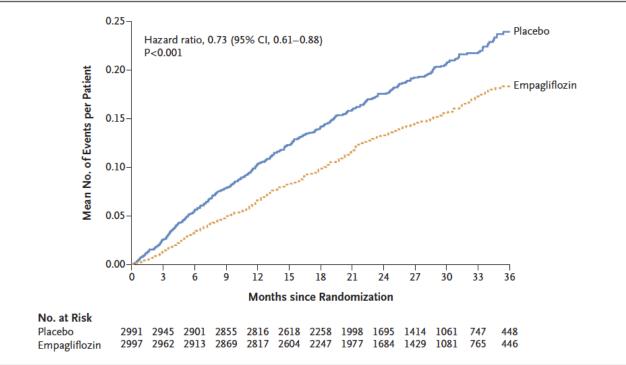
	Treatment		Placebo	Placebo				
	No./total No.	Rate/1000 patient-years	No./total No.	Rate/1000 patient-years	Hazard ratio (95% CI)	Favors treatment	Favors placebo	Weight, %
Patients with ASCVD						_		
EMPA-REG OUTCOME	490/4687	37.4	282/2333	43.9	0.86 (0.74-0.99)	⊢• -		19.19
CANVAS program	NA/3756	34.1	NA/2900	41.3	0.82 (0.72-0.95)	H●H		21.16
DECLARE-TIMI 58	483/3474	36.8	537/3500	41.0	0.90 (0.79-1.02)	<u></u>	I	24.90
CREDENCE	155/1113	55.6	178/1107	65.0	0.85 (0.69-1.06)	⊢●	1	8.82
VERTIS CV	735/5499	40.0	368/2747	40.3	0.99 (0.88-1.12)	-	\vdash	25.93
Fixed-effects model (Q	=4.53; df =4; P	= .34; <i>I</i> ² = 11.8%)			0.89 (0.84-0.95)	♦		
Patients without ASCVD								
CANVAS program	NA/2039	15.8	NA/1447	15.5	0.98 (0.74-1.30)	⊢ •	—	21.70
DECLARE-TIMI 58	273/5108	13.4	266/5078	13.3	1.01 (0.86-1.20)	H	\vdash	62.07
CREDENCE	62/1089	22.0	91/1092	32.7	0.68 (0.49-0.94)	⊢ •		16.23
Fixed-effects model (Q	=4.59; df = 2; P	= .10; <i>I</i> ² = 56.5%))		0.94 (0.83-1.07)		>	
						0.2 1	,	т 2
						HR (95% CI)	•	-


ASCVD indicates atherosclerotic cardiovascular disease; CANVAS, Canagliflozin Cardiovascular Assessment Study; CREDENCE, Evaluation of the Effects of Canagliflozin on Renal and Cardiovascular Outcomes in Participants With Diabetic Nephropathy; DECLARE-TIMI 58, Multicenter Trial to Evaluate the Effect of Dapagliflozin on the Incidence of Cardiovascular Events; EMPA-REG

OUTCOME, Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients; MACEs, major adverse cardiovascular events; NA, not available; VERTIS CV, Cardiovascular Outcomes Following Ertugliflozin Treatment in Type 2 Diabetes Mellitus Participants With Vascular Disease.

Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction





ORIGINAL ARTICLE

Empagliflozin in Heart Failure with a Preserved Ejection Fraction

Randomized, double-blind, placebo-controlled, multicentre pilot study on the effects of empagliflozin on clinical outcomes in patients with acute decompensated heart failure

(EMPA-RESPONSE-AHF)

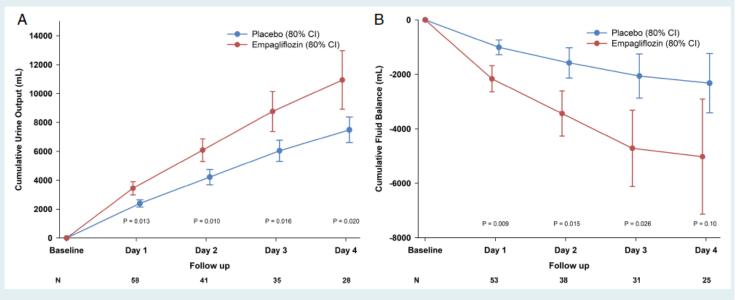
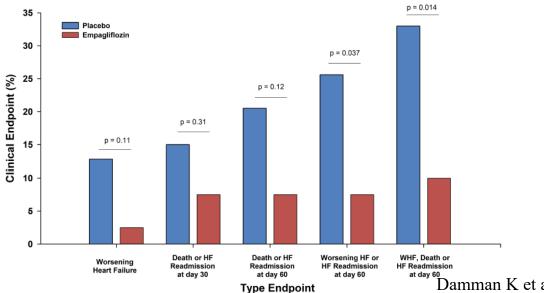



Figure 5 Urinary output and net fluid balance through day 4. (A) Cumulative urine output. (B) Cumulative net fluid balance. CI, confidence interval.

Damman K et al. *Eur J Heart Fail* 2020;22(4):713-722

Virginia Commonwealth
University

Randomized Trial of Empagliflozin in Non-Diabetic Patients with Heart Failure and Reduced Ejection Fraction

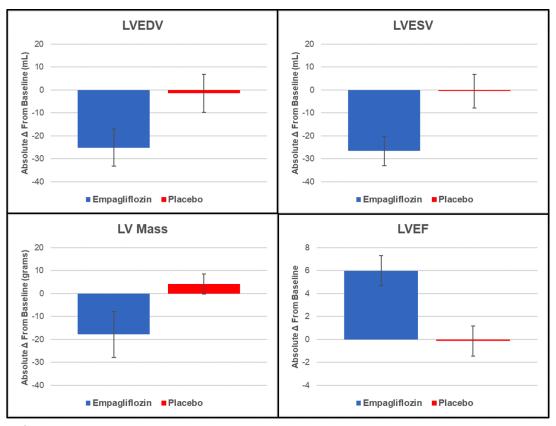
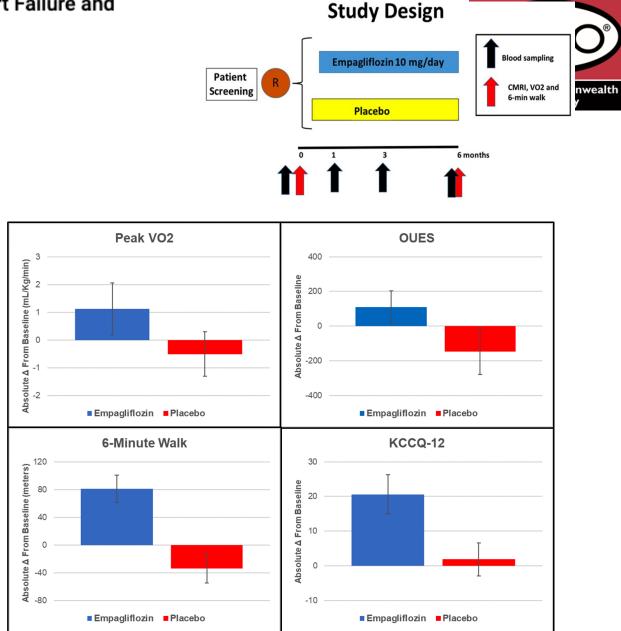



Figure 3

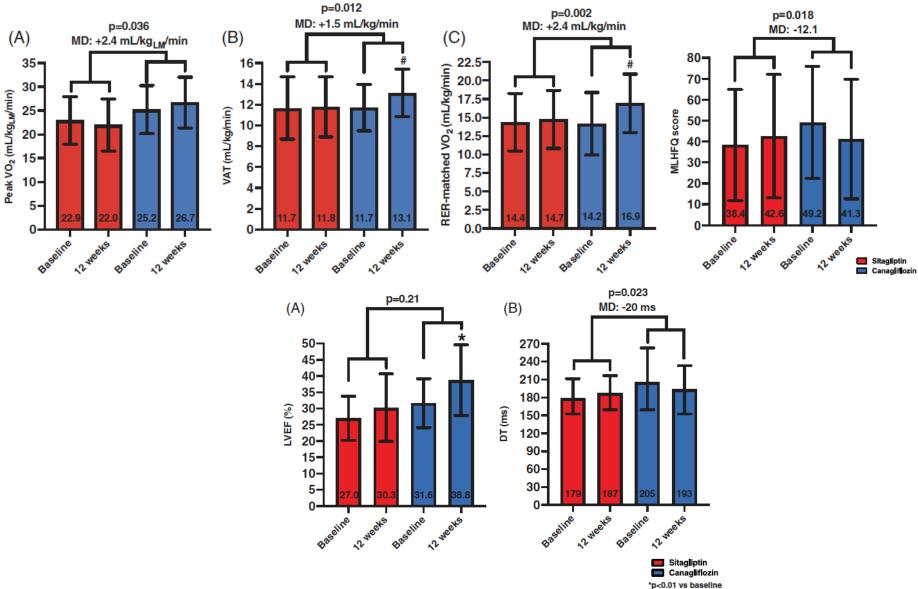
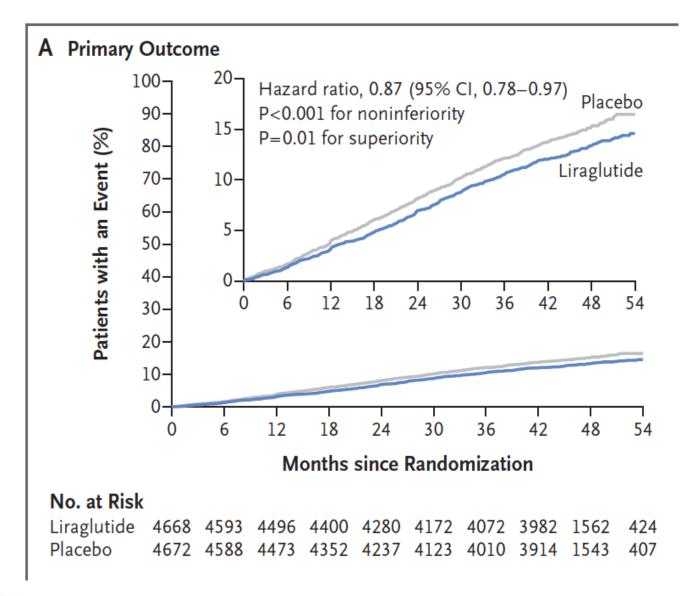


Figure 4 ~430-440 m baseline 6MWTD


The effects of canagliflozin compared to sitagliptin on cardiorespiratory fitness in type 2 diabetes mellitus and heart failure with reduced ejection fraction: The CANA-HF study

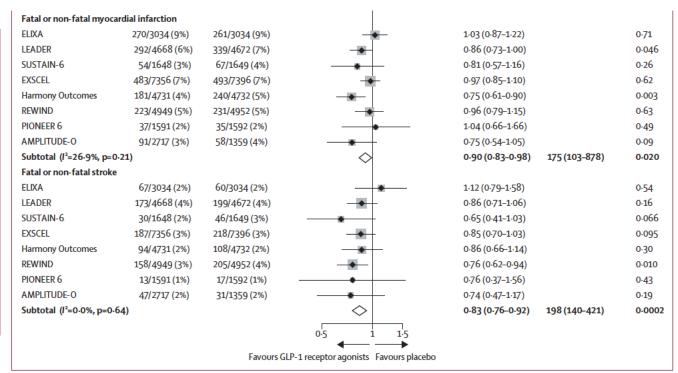
Mostly secondary prevention study Type 2 Diabetes Mellitus Approx 9,300 patients Followed for a median of 4 years

FDA Grants Liraglutide(Victoza) Cardiovascular Events Indication

Miriam E. Tucker DISCLOSURES

August 25, 2017

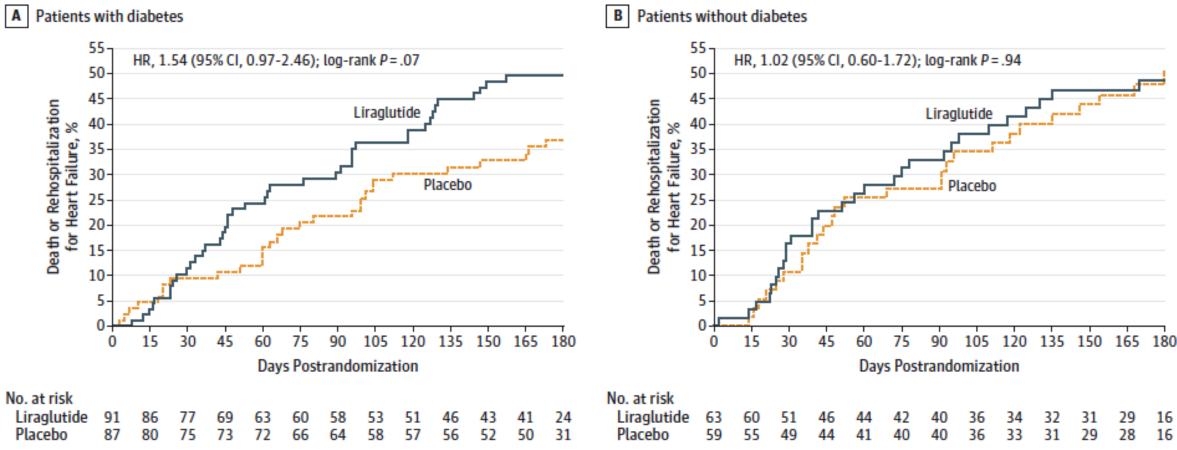
9Read Comments


The US Food and Drug Administration (FDA) has approved a new indication for liraglutide (*Victoza*, Novo Nordisk), for reducing the risk for myocardial infarction, stroke, and cardiovascular death in adults with type 2 diabetes who have established cardiovascular disease.

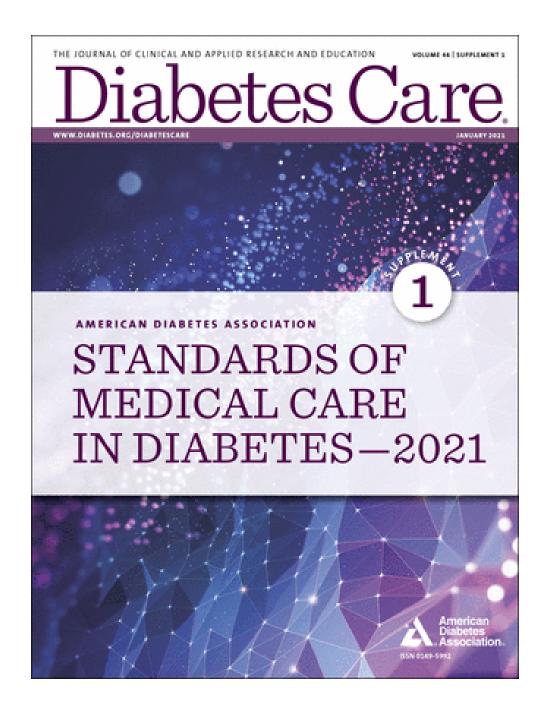
Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials

	GLP-1 receptor agonist, n/N (%)	Placebo, n/N (%)		Hazard ratio (95% CI)	NNT (95% CI)	p value
Three-point MACE						
ELIXA	400/3034 (13%)	392/3034 (13%)		1.02 (0.89-1.17)		0.78
LEADER	608/4668 (13%)	694/4672 (15%)	-	0.87 (0.78-0.97)		0.01
SUSTAIN-6	108/1648 (7%)	146/1649 (9%)		0.74 (0.58-0.95)		0.016
EXSCEL	839/7356 (11%)	905/7396 (12%)	•	0.91 (0.83-1.00)		0.061
Harmony Outcomes	338/4731 (7%)	428/4732 (9%)		0.78 (0.68-0.90)		0.0006
REWIND	594/4949 (12%)	663/4952 (13%)	•	0.88 (0.79-0.99)		0.026
PIONEER 6	61/1591 (4%)	76/1592 (5%)		0.79 (0.57-1.11)		0.17
AMPLITUDE-O	189/2717 (7%)	125/1359 (9%)		0.73 (0.58-0.92)		0.0069
Subtotal (I ² =44·5%, p=	0-082)		\Diamond	0.86 (0.80-0.93)	65 (45-130)	<0.0001
Cardiovascular death						
ELIXA	156/3034 (5%)	158/3034 (5%)	_	0.98 (0.78-1.22)		0.85
LEADER	219/4668 (5%)	278/4672 (6%)	-	0.78 (0.66-0.93)		0.007
SUSTAIN-6	44/1648 (3%)	46/1649 (3%)	-	0.98 (0.65-1.48)		0.92
EXSCEL	340/7356 (5%)	383/7396 (5%)	•	0.88 (0.76-1.02)		0.096
Harmony Outcomes	122/4731 (3%)	130/4732 (3%)	-	0.93 (0.73-1.19)		0.58
REWIND	317/4949 (6%)	346/4952 (7%)	•	0.91 (0.78-1.06)		0.21
PIONEER 6	15/1591 (1%)	30/1592 (2%)	•	0-49 (0-27-0-92)		0.021
AMPLITUDE-O	75/2717 (3%)	50/1359 (4%)	-	0.72 (0.50-1.03)		0.07
Subtotal (I2=13-4%, p=0	0.33)		\Diamond	0.87 (0.80-0.94)	163 (103-353)	0.0010

Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials



Hospital admission for	heart failure		1			
ELIXA	122/3034 (4%)	127/3034 (4%)		0.96 (0.75 to 1.23)		0.75
LEADER	218/4668 (5%)	248/4672 (5%)	•	0.87 (0.73 to 1.05)		0.14
SUSTAIN-6	59/1648 (4%)	54/1649 (3%)		1·11 (0·77 to 1·61)		0.57
EXSCEL	219/7356 (3%)	231/7396 (3%)	-	0.94 (0.78 to 1.13)		0.49
Harmony Outcomes	79/4731 (2%)	111/4732 (2%)		0.71 (0.53 to 0.94)		0.019
REWIND	213/4949 (4%)	226/4952 (5%)	-	0.93 (0.77 to 1.12)		0.46
PIONEER 6	21/1591 (1%)	24/1592 (2%)		0.86 (0.48 to 1.55)		0.59
AMPLITUDE-O	40/2717 (1%)	31/1359 (2%)		0.61 (0.38 to 0.98)		0.04
Subtotal (I ² =3.0%, p=0.	-41)		\Diamond	0.89 (0.82 to 0.98)	258 (158 to 1422)	0.013



Effects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction A Randomized Clinical Trial

FIRST-LINE Therapy is Metformin and Comprehensive Lifestyle (including weight management and physical activity)

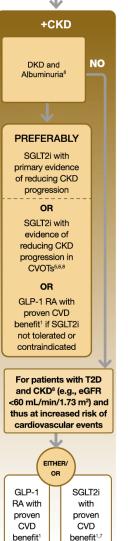
INDICATORS OF HIGH-RISK OR ESTABLISHED ASCVD, CKD, OR HF[†]

CONSIDER INDEPENDENTLY OF BASELINE A1C, INDIVIDUALIZED A1C TARGET, OR METFORMIN USE*

INDICATORS OF HIGH-RISK OR ESTABLISHED ASCVD, CKD, OR HF

CONSIDER INDEPENDENTLY OF BASELINE A1C. **INDIVIDUALIZED A1C TARGET, OR METFORMIN USE***

+ASCVD/Indicators of High Risk Established ASCVD Indicators of high ASCVD risk (age ≥55 years with coronary, carotid, or lower-extremity artery stenosis >50%, or LVH) EITHER/ GLP-1 SGLT2i RA with with proven proven CVD CVD benefit1 benefit1


+HF Particularly HFrEF (LVEF <45%) SGLT2i with proven benefit in this population5,6,7

Empagliflozin Canagliflozin

If A1C above target

If further intensification is required or patient is unable to tolerate GLP-1 RA and/or SGLT2i, choose agents demonstrating CV benefit and/or safety:

- For patients on a GLP-1 RA, consider adding SGLT2i with proven CVD benefit and vice versa1
- TZD²
- DPP-4i if not on GLP-1 RA
- Basal insulin³
- SU⁴
- 1. Proven CVD benefit means it has label indication of reducing CVD events
- 2. Low dose may be better tolerated though less well studied for CVD effects
- 3. Degludec or U-100 glargine have demonstrated CVD safety
- 4. Choose later generation SU to lower risk of hypoglycemia; glimepiride has shown similar CV safety to DPP-4i
- 5. Be aware that SGLT2i labelling varies by region and individual agent with regard to indicated level of eGFR for initiation and continued use
- 6. Empagliflozin, canagliflozin, and dapagliflozin have shown reduction in HF and to reduce CKD progression in CVOTs. Canagliflozin and dapagliflozin have primary renal outcome data. Dapagliflozin and empagliflozin have primary heart failure outcome data.

- 7. Proven benefit means it has label indication of reducing heart failure in this population
- 8. Refer to Section 11: Microvascular Complications and Foot Care
- 9. Degludec / glargine U-300 < glargine U-100 / detemir < NPH insulin
- 10. Semaglutide > liraglutide > dulaglutide > exenatide > lixisenatide
- 11. If no specific comorbidities (i.e., no established CVD, low risk of hypoglycemia, and lower priority to avoid weight gain or no weight-related comorbidities)
- 12. Consider country- and region-specific cost of drugs. In some countries TZDs are relatively more expensive and DPP-4i are relatively cheaper.
- † Actioned whenever these become new clinical considerations regardless of background glucose-lowering medications.
- * Most patients enrolled in the relevant trials were on metformin at baseline as glucose-lowering therapy.

Liraglutide

Semaglutide

Dulaglutide

DPP-4i

If A1C

above

target

SGLT2i

TZD

NO

COMPELLING NEED TO MINIMIZE

HYPOGLYCEMIA

SGLT2i

If A1C

above

target

GLP-1 RA

OR

DPP-4i

OR

TZD

If A1C above target

Continue with addition of other agents as outlined above

If A1C above target

Consider the addition of SU4 OR basal insulin:

Consider basal insulin with lower risk of hypoglycemia⁹

TZD

If A1C

above

target

SGLT2i

OR

DPP-4i

OR

GLP-1 RA

GLP-1 RA

If A1C

above

target

SGLT2i

OR

TZD

TO AVOID THERAPEUTIC **INERTIA REASSESS** AND MODIFY TREATMENT REGULARLY (3-6 MONTHS)

CONSIDER INDEPENDENTLY OF BASELINE A1C. **INDIVIDUALIZED A1C TARGET, OR METFORMIN USE***

INDICATORS OF HIGH-RISK OR ESTABLISHED ASCVD, CKD, OR HFT

+ASCVD/Indicators of High Risk Established ASCVD Indicators of high

ASCVD risk (age ≥55 years with coronary, carotid, or lower-extremity artery stenosis >50%, or LVH)

EITHER/

GLP-1 SGLT2i RA with proven proven CVD CVD benefit1 benefit1

If A1C above target

If further intensification is required or patient is unable to tolerate GLP-1 RA and/or SGLT2i, choose agents demonstrating CV benefit and/or safety:

- For patients on a GLP-1 RA, consider adding SGLT2i with proven CVD benefit and vice versa1
- TZD²
- DPP-4i if not on GLP-1 RA
- Basal insulin³
- SU⁴

Particularly HFrEF (LVEF <45%)

+HF

SGLT2i with proven benefit in this population5,6,7

Empagliflozin Canagliflozin

Empagliflozin Dapagliflozin Canagliflozin Ertugliflozin

+CKD

NO

DKD and Albuminuria8

PREFERABLY

SGLT2i with primary evidence of reducing CKD progression

OR

SGLT2i with evidence of reducing CKD progression in CVOTs5,6,8

OR

GLP-1 RA with proven CVD benefit1 if SGLT2i not tolerated or contraindicated

For patients with T2D and CKD8 (e.g., eGFR <60 mL/min/1.73 m²) and thus at increased risk of cardiovascular events

EITHER/ SGLT2i

GLP-1 RA with proven CVD benefit1

proven CVD benefit1,7

7. Proven benefit means it has label indication of reducing heart failure in this population

8. Refer to Section 11: Microvascular Complications and Foot Care

Choose later generation SU with

lower risk of hypoglycemia

- 9. Degludec / glargine U-300 < glargine U-100 / detemir < NPH insulin
- 10. Semaglutide > liraglutide > dulaglutide > exenatide > lixisenatide
- 11. If no specific comorbidities (i.e., no established CVD, low risk of hypoglycemia, and lower priority to avoid weight gain or no weight-related comorbidities)
- 12. Consider country- and region-specific cost of drugs. In some countries TZDs are relatively more expensive and DPP-4i are relatively cheaper.

COMPELLING NEED TO MINIMIZE WEIGHT GAIN OR PROMOTE WEIGHT LOSS

EITHER/

IF A1C ABOVE INDIVIDUALIZED TARGET PROCEED AS BELOW

GLP-1 RA with good efficacy SGLT2i for weight loss10

If A1C above target

GLP-1 RA with good efficacy SGLT2i for weight loss10

If A1C above target

₩

If quadruple therapy required, or SGLT2i and/or GLP-1 RA not tolerated or contraindicated, use regimen with lowest risk of weight gain

PREFERABLY

DPP-4i (if not on GLP-1 RA) based on weight neutrality

If DPP-4i not tolerated or contraindicated or patient already on GLP-1 RA, cautious addition of:

SU⁴ • TZD² • Basal insulin

COST IS A MAJOR ISSUE11,12 SU⁴

If A1C above target

TZD12

TZD12 SU⁴

If A1C above target

Insulin therapy basal insulin with lowest acquisition cost

OR

Consider other therapies based on cost

- 1. Proven CVD benefit means it has label indication of reducing CVD events 2. Low dose may be better tolerated though less well studied for CVD effects
- 3. Degludec or U-100 glargine have demonstrated CVD safety
- 4. Choose later generation SU to lower risk of hypoglycemia; alimepiride has shown similar CV safety to DPP-4i
- 5. Be aware that SGLT2i labelling varies by region and individual agent with regard to indicated level of eGFR for initiation and continued use
- Empagliflozin, canagliflozin, and dapagliflozin have shown reduction in HF and to reduce CKD progression in CVOTs. Canagliflozin and dapagliflozin have primary renal outcome data. Dapagliflozin and empagliflozin have primary heart failure outcome data.

- † Actioned whenever these become new clinical considerations regardless of background glucose-lowering medications.
- * Most patients enrolled in the relevant trials were on metformin at baseline as glucose-lowering therapy.

Liraglutide

Semaglutide

Dulaglutide

		Efficacy	Hypoglycemia	Weight	CV effects		Cost	Oral/SQ	Renal effects		Additional considerations	Project
L				change	ASCVD	HF			Progression of DKD	Dosing/use considerations*		
М	etformin	High	No	Neutral (potential for modest loss)	Potential benefit	Neutral	Low	Oral	Neutral	■ Contraindicated with eGFR <30 mL/min/1.73 m ²	 Gastrointestinal side effects common (diarrhea, nausea) Potential for B12 deficiency 	
SO	LT-2 inhibitors	Intermediate	No	Loss	Benefit: empagliflozin†, canagliflozin	Benefit: empagliflozin†, canagliflozin, dapagliflozin‡	High	Oral	Benefit: canagliflozin§, empagliflozin, dapagliflozin	Renal dose adjustment required (canagliflozin, dapagliflozin, empagliflozin, ertugliflozin)	 Should be discontinued before any scheduled surgery to avoid potential risk for DKA DKA risk (all agents, rare in T2D) Risk of bone fractures (canagliflozin) Genitourinary infections Risk of volume depletion, hypotension †LDL cholesterol Risk of Fournier's gangrene 	
Gl	P-1 RAs	High	No	Loss	Neutral: exenatide once weekly, lixisenatide Benefit: dulaglutide†, liraglutide†, semaglutide†	Neutral	High	SQ; oral (semaglutide)	Benefit on renal end points in CVOTs, driven by albuminuria outcomes: liraglutide, semaglutide, dulaglutide	Exenatide, lixisenatide: avoid for eGFR <30 mL/min/1.73 m² No dose adjustment for dulaglutide, liraglutide, semaglutide Caution when initiating or increasing dose due to potential risk of nausea, vomiting, diarrhea, or dehydration. Monitor renal function in patients reporting severe adverse GI reactions when initiating or increasing dose of therapy.	FDA Black Box: Risk of thyroid C-cell tumors in rodents; human relevance not determined (liraglutide, albiglutide, dulaglutide, exenatide extended release, semaglutide) Gl side effects common (nausea, vomiting, diarrhea) Injection site reactions Pancreatitis has been reported in clinical trials but causality has not been established. Discontinue if pancreatitis is suspected.	
DPP-4 inhibitors		Intermediate	No	Neutral	Neutral	Potential risk: saxagliptin	High	Oral	Neutral	Renal dose adjustment required (sitagliptin, saxagliptin, alogliptin); can be used in renal impairment No dose adjustment required for linagliptin	 Pancreatitis has been reported in clinical trials but causality has not been established. Discontinue if pancreatitis is suspected. Joint pain 	
ТН	iazolidinedione	High	No	Gain	Potential benefit: pioglitazone	Increased risk	Low	Oral	Neutral	No dose adjustment required Generally not recommended in renal impairment due to potential for fluid retention	FDA Black Box: Congestive heart failure (pioglitazone, rosiglitazone) Fluid retention (edema; heart failure) Benefit in NASH Risk of bone fractures Bladder cancer (pioglitazone) ↑LDL cholesterol (rosiglitazone)	
	lfonylureas nd generation)	High	Yes	Gain	Neutral	Neutral	Low	Oral	Neutral	Glyburide: not recommended Glipizide and glimepiride: initiate conservatively to avoid hypoglycemia Glyburide: not graph of the conservatively to avoid hypoglycemia	FDA Special Warning on increased risk of cardiovascular mortality based on studies of an older sulfonylurea (tolbutamide)	
In	ulin Humar insulin	Highest	Yes	Gain	Neutral	Neutral		SQ; inhaled	Neutral	Lower insulin doses required with a decrease in eGFR; titrate per clinical response	 Injection site reactions Higher risk of hypoglycemia with human insulin (NPH or premixed 	
	Analog	S					High	SQ		per cirrical response	formulations) vs. analogs	

2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure

Management of patients with HFrEF

- ACE-I/ARNI^a
- Beta-blocker
- MRA
- Dapagliflozin/Empagliflozin
- Loop diuretic for fluid retention (Class I)

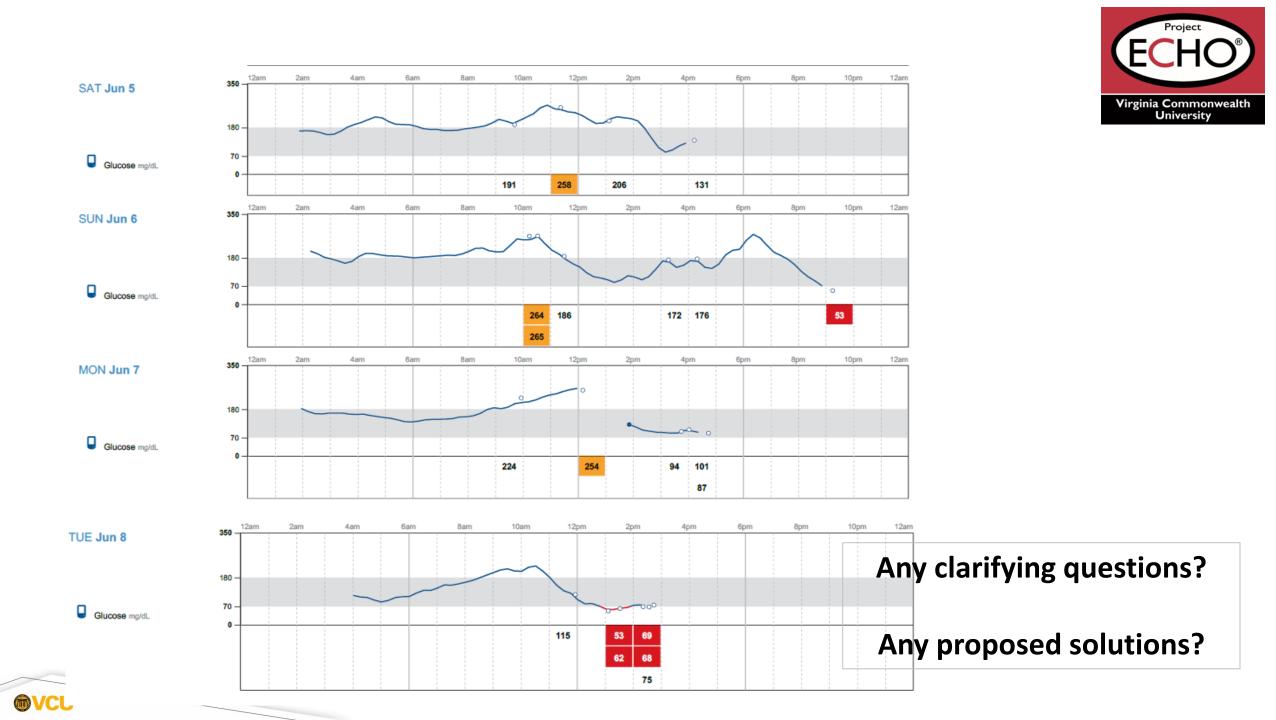
Conclusions

- GLP1RA (particularly liraglutide, semaglutide and dulaglutide) and SGLT2i (particularly empagliflozin and canagliflozin) reduce MACE in patients with T2DM.
- SGLT2i and GLP1RA are associated with lower risk for HF, however, in patients with established HF, especially advanced HFrEF (with and without T2DM), SGLT2i empagliflozin and dapagliflozin should be preferred and empagliflozin in HFpEF.
- CV benefits, especially in patients with HF, occur very early (within a month), therefore delaying the use of these agents may be preventing significant clinical benefits.

Case Study #1:

HPI: 50 year old lady with T2DM, Hyperlipidemia, anxiety, BMI 30.3, weight 82.5kg, presenting to establish care for diabetes

Diabetes for 3 years, diagnosed on screening annual A1c 9%, progressed to 11% and started on insulin


Medications:

- Victoza 1.8mg SQ daily--> discontinued, when patient started Humulin R 20 units ac TID
- Glimeperide 4mg daily,
- Januvia 100mg daily,
- Jardiance 25mg daily,
- Metformin 1000mg BID

Any clarifying questions?

Any proposed solutions?

Case Study #2:

HPI: 54 year old man with sarcoidosis (primarily pulmonary involvement), T2DM, osteoporosis, hyperlipidemia, hypertension, re-establishing care with diabetes clinic.

Diabetes dx 2013, concerning for progression over past year from A1c $8\% \rightarrow 10.2\%$. Attributes this progression solely to dietary indiscretions. BMI 25, weight 81.4kg

Medications:

- NPH 8 units with breakfast and dinner, prefers to obtain without a prescription at Wal-Mart due to cost concerns,
- Metformin 1500mg daily (2 in AM, 1 at night)
- Prednisone 5mg daily in AM
- Glucose checks: BID, Range: Per patient recall, range 100s-190s

Any clarifying questions? Any proposed solutions?

Case Study #2:

- No changes made at 1st visit due to patient preferences to focus on nutrition changes first
- At follow up visit 6 months later, A1c 8.1%
- NPH 7 units with breakfast and dinner, metformin 2000mg daily
- Glucose monitoring; BID, every day, Range: Per patient recall, range 140s fasting AM, bedtime 170s- 180s

Any clarifying questions? Any proposed solutions?

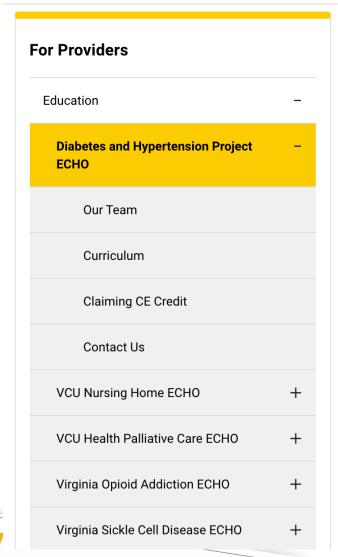
Case Studies

- Anyone can submit cases: www.vcuhealth.org/echodmhtn
- Receive feedback from participants and content experts
- Earn \$150 for submitting and presenting

Provide Feedback

www.vcuhealth.org/echodmhtn

- Feedback
 - Overall feedback related to session content and flow?
 - Ideas for guest speakers?


Access Your Evaluation

c vcuhealth.org/services/telehealth/for-providers/education/diabetes-and-hypertension-project-echo

☆

Diabetes and Hypertension Project ECHO

Welcome to the Diabetes and Hypertension Extension for Community Health Outcomes or ECHO, a virtual network of multidisciplinary diabetes and hypertension experts. An ECHO model connects professionals with each other in real-time collaborative virtual sessions on Zoom. Participants present de-identified cases to one another, share resources, connect to each other, and grow in their expertise. This ECHO will address practice level issues and solutions related to managing complex patients with difficult to control diabetes and hypertension. Register now for an ECHO Session!

Network, Participate and Present

- Engage in a collaborative community with your peers.
- · Listen, learn and discuss informational and case presentations in real-time.
- Take the opportunity to submit your de-identified case study for feedback from a team of specialists for diabetes and hypertension.
- Provide valuable feedback.
- Claim CE credit by texting in attendance.

Benefits

VCU Diabetes & Hypertension Project ECHO Clinics

2nd and 4th Thursdays — *NEW: 12 p.m. to 1 p.m.*

Mark Your Calendars — Upcoming Sessions

Sept. 23: Diabetic Neuropathy

Oct. 14: Primary and Secondary Aldosteronism

Please register at www.vcuhealth.org/echodmhtn

Thank you for coming!

Text 19179-18817 to 804-625-4041 for CE credit

Reminder: Mute and Unmute to talk

Press *6 for phone audio

